首页> 外文OA文献 >A multilevel model for spatially correlated binary data in the presence of misclassification: an application in oral health research
【2h】

A multilevel model for spatially correlated binary data in the presence of misclassification: an application in oral health research

机译:存在错误分类的空间相关二进制数据的多级模型:在口腔健康研究中的应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Dental caries is a highly prevalent disease affecting the tooth's hard tissues by acid-forming bacteria. The past and present caries status of a tooth is characterized by a response called caries experience (CE). Several epidemiological studies have explored risk factors for CE. However, the detection of CE is prone to misclassification because some cases are neither clearly carious nor noncarious, and this needs to be incorporated into the epidemiological models for CE data. From a dentist's point of view, it is most appealing to analyze CE on the tooth's surface, implying that the multilevel structure of the data (surface-tooth-mouth) needs to be taken into account. In addition, CE data are spatially referenced, that is, an active lesion on one surface may impact the decay process of the neighboring surfaces, and that might also influence the process of scoring CE. In this paper, we investigate two hypotheses: that is, (i) CE outcomes recorded at surface level are spatially associated; and (ii) the dental examiners exhibit some spatial behavior while scoring CE at surface level, by using a spatially referenced multilevel autologistic model, corrected for misclassification. These hypotheses were tested on the well-known Signal Tandmobiel® study on dental caries, and simulation studies were conducted to assess the effect of misclassification and strength of spatial dependence on the autologistic model parameters. Our results indicate a substantial spatial dependency in the examiners' scoring behavior and also in the prevalence of CE at surface level.
机译:龋齿是一种高度流行的疾病,它通过形成酸的细菌影响牙齿的硬组织。牙齿的过去和现在的龋齿状态的特征是被称为龋齿经历(CE)的响应。几项流行病学研究已经探讨了CE的危险因素。但是,由于某些病例既不是明显龋病也不是非龋齿病,因此对CE的检测很容易分类错误,需要将其纳入CE数据的流行病学模型中。从牙医的角度来看,分析牙齿表面的CE最吸引人,这意味着需要考虑数据的多层次结构(表面-牙齿-嘴巴)。另外,CE数据是在空间上参考的,也就是说,一个表面上的活动性病变可能会影响相邻表面的衰减过程,也可能会影响对CE评分的过程。在本文中,我们研究了两个假设:(i)表面水平记录的CE结果在空间上相关; (ii)牙科检查员表现出一些空间行为,同时通过使用空间参考的多层自动模型对表面等级的CE评分,并针对错误分类进行了校正。这些假设已在著名的关于龋齿的SignalTandmobiel®研究中进行了测试,并进行了模拟研究,以评估错误分类的影响以及空间依赖强度对自体模型参数的影响。我们的结果表明,考官的评分行为以及表面水平的CE患病率存在​​很大的空间依赖性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号